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Abstract. A new approach to robust estimation of sig-
nals and prediction of time—series is considered. Signal
and system parameter deviations are represented as ran-
dom variables, with known covariances. A robust design
is obtained by minimizing the squared estimation error,
averaged both with respect to model errors and noise. A
polynomial solution, based on averaged spectral factor-
izations and averaged Diophantine equations, is derived.
The robust estimator is called a cautious Wiener filter.
It turns out to be no more complicated to design than
an ordinary Wiener filter.
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1. INTRODUCTION

Kalman and Wiener filters are in frequent use. With
many computer programs for design available, filter pa-
rameters are easy to obtain. Perhaps too easy, since we
are not forced to specify the validity of our models. It is
also hard to take a whole range of expected system be-
haviour into account. The goal of robust filter synthesis
is to overcome these drawbacks.

We here propose a novel approach to robust design for
signal estimation. It is based on a stochastic description
of model errors, related to the stochastic embedding con-
cept of Goodwin and Salgado (1989). A single robust fil-
ter, for the whole class of possible models, is obtained by
minimizing the squared estimation error, averaged both
with respect to model errors and the noise.

Most previous suggestions for robust filter design have
been based on the minimax approach. See e.g.
D’Appolito and Hutchinson (1972) and Kassam and
Poor (1985). Apart from leading to a much simpler de-
sign methodology, the approach proposed here avoids
two drawbacks of robust minimax design. First, the de-
scriptions of model uncertainties may have soft bounds.
These are more readily obtainable in a noisy environ-
ment than the hard bounds required for minimax design.
Secondly, not only the range of uncertainties, but also
their likelihood is taken into account; Probable model
errors will have a greater impact on an estimator design

than do very rare “worst cases”. The conservativeness
is thus reduced.

A polynomial solution, based on averaged spectral fac-
torizations and averaged Diophantine equations, will be
presented. The design procedure constitutes a general-
ization of the polynomial equations approach, which was
pioneered by Kuéera (1979). Mild solvability conditions
guarantee the existence of stable optimal filters. The ro-
bust design turns out to be no more complicated than
the design of an ordinary Wiener filter. The method-
ology is here exemplified on a scalar discrete—time de-
convolution problem. Derivation of design equations for
this and other problems, such as state estimation and
feedforward control, can be found in Sternad and Ahlén
(1993).

Remarks on the notation. For any complex polyno-
mial of degree np, in the backward shift operator

Plg V) =po+pig ' + ...+ pnpg™ ™

the conjugate polynomial is defined as P;(q) = pr+pig+
...+pp,q"?. For convenience, polynomial arguments will
often be omitted. We call P(q~!) stable if all zeros of
P(z71) arein |z| < 1.

2. THE ESTIMATION PROBLEM

A scalar deconvolution problem will be considered, to
illustrate the design principles. It includes eg. ordinary
output filtering and prediction of ARMA-processes as
special cases. It also includes the design of linear re-
cursive equalizers for digital communications. Measure-
ments are described as

y(t) = Glg™Mult — k) +w(t) - 1)

The linear, causal and possibly uncertain transfer func-
tion G(¢~') may eg. represent a transducer. If the delay
is uncertain, k£ denotes its minimum value. The input
u(t) and the measurement noise w(t) are described by
possibly uncertain ARMA-models

u(t) = Fl@he®) ;5  w(t)=HgMot) (2)
Ele(®2=1 ; E(t)}? 22



The time-series e(t) and v(t) are assumed mutually un-
correlated. They are stationary white noises or impulse
sequences, with zero mean. The variance o2 may be un-
certain and has nominal value pg. All transfer functions
are assumed time-invariant. Signals may be complex—
valued; this is the case eg. in digital communications

applications.

A stable, linear and time-invariant estimator of w(t),
given y(t + m), is sought. Depending on m, it could
be a predictor (m < 0), a filter (m = 0) or a fixed lag
smoother (m > 0).

3. ADDITIVE PROBABILISTIC
ERROR MODELS

The transfer functions G, F and H may be uncertain.
An error model is a quantification of the model error
class. Together with a nominal model, it constitutes
the eztended design model on which a robust design is
based. As error models, we will utilize additive trans-
fer functions AF, AG, AH, with unknown stochastic nu-
merators and pre—specified denominators. This choice is
crucial for obtaining a simple solution to the filtering
problem. The extended design models are specified as

o= @ N CiAC CoD1 + DoC1AC A g
~ Dy D, DoD;y D
G — @ 4 BiAB _ BoAi + AoB1AB A E
T A Aq Ao Ay A
3 = % 4 MyAM — MoNy + NoMiAM A %
TN N, NoN; - N

(3)

Above, Cy/Dy etc. represent nominal models, with de-
grees ncg,ndy etc. They are assumed known and sta-
ble. Stable “error denominators” D;, A; and N, of
degrees ndy,na; and nny, as well as numerator factors
C1, By, My, of degrees ncy,nb; and nmy, may be speci-
fied by the designer or obtained from data. Coefficients
of numerator polynomials

AP(q_l) =Apo+Aprgt+... + Apgpq_‘;p (4)

are stochastic variables. They have zero means and pa-
rameter covariances EApiAp;f, collected in the covari-
ance matrices Pap. These coefficients are constant in
time, so they are independent of the time series e(t) and
v(t). Except for first and second order moments, their
distributions need not be known, since they will not af-
fect the design.

All polynomial degrees are assumed known to (or spec-
ified by) the designer !. Note also that denominators

INote that we are talking about an extended design model. In
practice, it will only be an approximation of a class of possibly
infinite dimensional and time—varying true systems.

polynomials are all assumed stable. Model uncertainty
more or less forces us to restrict attention to stable ex-
tended design models 2.

In the following, we utilize three further assumptions:
A1. Coefficients of AC and of AB are independent.

A2. The covariance matrices Pac,Pap and Pajs are
Hermitian and positive semidefinite.

A3. The standard deviation of v(t), o,, is regarded as a
stochastic variable, independent of AM, with mean
V/Po and variance Eo2 — (E(0,))*> = p,. Thus,

A
Eo? = po + py = p.

The uncertainty in py will be taken into account by using
a higher equivalent variance p. It is necessary to assure
A2 when the covariance matrices are used pragmatically,
as “robustness tuning knobs”. Design equations could
be derived for situations with correlations between AC
and AB. Assumption A1l does, however, simplify the
solution, and seems reasonable.

Model error covariances may be obtained from identifica-
tion experiments, or from frequency domain data on sys-
tem variability. See Sternad and Ahlén (1993), Goodwin
and Salgado (1989) and Goodwin, Gevers and Ninnes
(1991). If a fixed filter is to be designed for a large num-
ber of systems, the statistics may be obtained from a
representative sample of systems.

Probabilistic error models remain useful also when
statistics is hard to obtain. Those who prefer a Bayesian
view could then interprete error distributions as subjec-
tive probabilities. Others may just use them pragmati-
cally, as robustness “tuning knobs”. The covariances are
then altered until satisfactory spectral properties of the
filter are obtained.

4. DESIGN OF ROBUST FILTERS

We proceed from the model (0.1), (0.2) and (0.3). The
coefficients of AC, AB and AM are random variables,
whose possible values parametrize a set of systems. We
will minimize the averaged MSE criterion

E(E|=(t)P) = EE|f(t) — f(¢lt +m)|? ()

where E represents expectation over noise and E is an
expectation over the model error distribution. We thus
seek a single estimator which provides the best MSE

2If unstable poles were exactly known, a finite estimation error
could be obtained, by a filter which cancels unstable poles by zeros
in the total signal path to the estimation error. Such a strategy is,
of course, highly non-robust to mis—modelling of unstable poles.
With uncertain unstable poles, the design problem becomes un-
solvable, in the open—loop context considered here. Therefore, a
general solution involving two coupled Diophantine equations will
not be of interest here.



performance, on average, when applied on randomly se-
lected systems within the specified class.

This type of criterion has been used in connection to
other filtering problems, e.g. by Chung and Bélanger
(1976), Speyer and Gustafson (1975) and by Grimble
(1984). These works were based on the assumption of
small uncertainties and on series expansion of uncertain
poles. In our design philosophy, we start from a model
structure (0.3), and adjust it to the uncertainty directly.
Large uncertainties can then be described in a much bet-
ter way. See Sternad and Ahlén (1993).

4.1 The averaged spectral factorization

An averaged spectral factor 3(¢~1) is defined as the sta-
ble and monic solution to
rBB. & E{CC,BB,NN, + 0c2MM,AA,DD,} (6)
with scalar r. Define double—sided polynomials
2 E(BB,), MM, 2 E(MM,)
(7)

¢C, 2 E(cc,), BB,
Then, use of (0.3) gives
CC, = CyCy. D1 D1, + DDy C1C1.E(ACAC,)

BB, = ByBo,A1 A1 + AoAo.B1B1.E(ABAB,)

MM, = MyMy.Ni N1, + NoNow My M1 E(AMAM,)
(8)

We can now simplify (0.6).

Lemma 1. Let assumptions Al and A3 hold. Then,
(0.6) can be expressed as

rBB, = CC.BB,NN, + pMM,AA,DD,  (9)

|
Proof: The coefficients of a polynomial AP are zero
mean stochastic variables. Coefficients of APAP, will
also be stochastic variables, having expected values given
by (0.11) below. The noise standard deviation is in-
dependent of AM and the coefficients of (AB, AC),
are independent, and so are the coefficients of ABAB,,
ACAC,. Using independence for complex parameters,
the right-hand side of (0.6) becomes

E(CC.)E(BB,)NN, + E(0,)>E(MM,)AA.DD,
which, utilizing (0.7) and A3, is (0.9) |

The averaged factors in (0.8) can be evaluated as follows.
For a stochastic error model numerator AP(g~1), as in
(0.4), let the Hermitian parameter covariance matrix be
E|Apol? E(ApoAp},)
Pap = : : (10)

E(ApgpAp’S) E|Ap5p|2

Denote the sum of the diagonal elements hg, the sum of
elements in the ¢'th super—diagonal h;, and the sum of
elements in the i’th subdiagonal h_,. Note that h_; =
h. Then it becomes evident, by direct multiplication of
AP(q7')AP,(q), and taking expectations, that

E(APAP,) =

hopd ™ 4 ..+ hiq  ho +hag+ ..+ hapg®™ . (11)

Thus, the averaged factors in (0.8) are readily obtained.
(Above, dp < dp, with dp = 0 if coefficients are uncorre-
lated.)

In (0.8), CC, will contain powers up to ¢*"¢, where
né = max{ncg + ndy,ndy + nc; + de}, with analogous
expressions for nb,nm. Since N = NyN; etc, the aver-
aged spectral factor in (0.9) has degree

nf = max{né+n5+nno +nn1, nim+nag+na; +ndo+nd; }

The factorization (0.9) is solvable with respect to a
unique stable B(z71) iff its right-hand side is positive
on |z| = 1. Introduce the assumptions

A4. Co, ClE(ACAC*), pMo and leE(AMAM*)
have no common zeros on |z| =1

AS5. Bo7 BlE(ABAB*), pMo and leE(AMAM*)
have no common zeros on |z| = 1.

Lemma 2. Let D,A and N be stable and A2 hold.
Then, a unique stable spectral factor 3, satisfying (0.9),
exists, if and only if both of A4 and A5 are true ]

Proof: See Sternad and Ahlén (1993).

The conditions A4 and A5 are mild. They will almost
always be fulfilled, even if Cy, By and My have zeros on
the unit circle. In fact, the conditions are more relaxed
than for the nominal case, due to the presence of aver-
aged factors E(-).

4.2 The cautious Wiener filter

Theorem 1. Assume an extended design model (0.1)—
(0.3) to be given, with known covariances of the stochas-
tic polynomial coefficients. Assume A1-A5 to hold. An
estimator of u(t) then minimizes (0.5), among all linear
time-invariant estimators based on y(t +m), if and only
if it has the same coprime factors as

Q _ Q1 NoN1Ag A,

a(t|t +m) = %y(t+m) R 5

(12)

Here, 3(¢~") is obtained from (0.9), while Q;(¢™ 1), to-
gether with L,(q), is the unique solution to

¢~ CC,Bos A1 NowN1w = rB.Q1 + qDoD1 L, (13)



with polynomial degrees

n@ < max(né —k+m, ndy+nd; —1)

nL < max(n¢+ nby + nai +nng + nnq (14)

+k—m, npB)—1 .

For an ensemble of systems, the minimal criterion value
becomes

_ 1 LL CC.MM,AA
2 _ * % * *
EElz(t)lmin_ ZﬂifTﬁﬂ* +p T,Bﬁ*
CC.CC.E(AGAG,)AA.NN,
; -F(AGAG.) L )
DD.rpB8. z
||

Proof: See Sternad and Ahlén (1993).

Remarks. The equations for minimizing (0.5) are (0.9),
(0.11) and (0.13). The only new type of computation, as
compared to a nominal solution, is trivial: summation
of covariance matrix elements, diagonalwise.

Note that N; and A; affect the filter (0.12) directly. If
1/N; or 1/A; in the error models have resonance peaks,
indicating large uncertainty, the filter (0.12) will have
low gain at those frequencies. With increasing model
uncertainty, the zeros of § are moved inward in the unit
circle. Resonance peaks of the estimator are lowered and
broadened.

Equation (0.13) will have a unique solution, with degrees
(0.14). Note that f3,(z) (unstable) and Dy(z~1)D;(271)
(stable) have no common factors.

The integrand of (0.15) consists of three terms. Term 1
represents the effect of finite smoothing lag m. It can
be shown that L.(¢) — 0 when m — oco. The second
term mainly represents the effect of noise. It vanishes
for p = 0. Finally, the third term represents degrada-
tion caused by errors AG = B;AB/A; in the transducer
model. It vanishes only when AG = 0.

In situations with little noise and sufficiently large
smoothing lag m, term 3 in (0.15) will dominate the
error. This is not surprising; a deconvolution smoother
then essentially inverts G. This operation is sensitive to
model errors there.

4.3 Analytical expressions for perfor-
mance evaluation

Theorem 2. Let a nominal estimator Qo/Ry be de-
signed based on a nominal model, as in eg. Ahlén and
Sternad (1989),(1991). Applying it, instead of (0.12), on
an ensemble of systems results in an increase, compared
to (0.15), of the mean MSE EE|z(t)|2. The increase is
given by

|2
min

EE|z(t)|5 — EE|z(t)

2

2
_ L?{ B Qo _ Q| dz (16)

27 DAN| |Ry R| =z
where r, 3 is defined by (0.6)-(0.9) and Q/R is the opti-
mal robust filter, given by (0.12). [ |

Proof: See Sternad and Ahlén (1993).

Theorem 3. Let a robust estimator /R be designed
by (0.9)-(0.13). When applying it on a system equal to
the nominal model, the increased MSE, compared to the
minimum, is

2 2
dz
— 17
=

Blz(t)]” - El2(t)[; =
Q D

To_ 7{ Po

271 DvoNo R RO
where ro and (p are obtained from the spectral factor-
ization in a nominal design. ]

Proof: See Sternad and Ahlén (1993).

Remarks. The expression in (0.16) can be used for ar-
bitrary linear estimators Qo/Rp, for example minimax—
designs. We thus do not have to evaluate the mean per-
formance of alternative designs by Monte—Carlo simu-
lation. The mean innovations model §/DAN in (0.16),
and the nominal innovations model 8o/ Do Ao Ny in (0.17)
can be seen as weighting functions. In frequency regions
where their magnitude is large, differences between the
two estimators will have a large impact on the perfor-
mance.

A simulation study of the filtering performance is pre-
sented in Sternad and Ahlén (1993).
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